Electronic Properties of the NREL Low Filament Temperature HWCVD Amorphous Silicon Germanium Alloys

Shouvik Datta and J. David Cohen

Department of Physics, University of Oregon with

Yueqin Xu and Harv Mahan

National Renewable Energy Laboratory

Work at Oregon under NREL Subcontract ADJ-2-30630-17

Urbach Energies for the Best a-Si,Ge:H

The Best PECVD vs. HWCVD a-Si,Ge:H

Urbach Energy plus Gap Energy Determines Defect Density

$$N_D = N_0 E_U \exp[-(E_D - E^*)/E_U]^{-1}$$

- •• Single choice of N₀ and E* used for all sets of samples
- The germanium fraction of these alloys varies between 0.2 and 1.0.

¹ M. Stutzmann, Philos. Mag. B**60**, 531 (1989)

The Best PECVD vs. HWCVD a-Si,Ge:H

Spectra for NREL HWCVD a-Si,Ge:H

2000°C Tungsten Filament

Best HWCVD
Samples prior to 2004

Does this mean that Ion Bombardment is crucial for high quality a-Si,Ge:H?

Spectra for NREL HWCVD a-Si,Ge:H

2000°C Tungsten Filament

1800°C Tantalum Filament

The Best PECVD vs. HWCVD a-Si,Ge:H

Mid-gap Defect Density Profiles via DLCP

Note that $N_{\rm D}$ increases in the direction of film growth

This reflects the fact that the substrate temperature increased as much as 90°C during growth

Properties of New HWCVD a-Si,Ge:H Alloys

New NREL HWCVD a-Si,Ge:H alloys exhibit electronic properties as good as any alloys ever characterized

Sample	Ge Fraction (at.%)	Growth Rate (Å/s)	E ₀₄ (eV)	E _{Tauc} (eV)	Eu (meV)	Defect Density (cm-3)
L1305	15	1.39	1.79	1.65	42 ± 2	2 × 10 ¹⁵
L1306	29	1.78	1.66	1.50	43 ± 3	$4\pm2\times10^{15}$
L1307	47	2.00	1.47	1.32	45 ± 2	2±1 × 10 ¹⁶

- •Urbach energies from Photocapacitance Spectra
- •Midgap Defect densities from DLCP measurements
- Note relatively high growth rates

Recent Samples Exhibit Poorer Properties

Photocapacitance Spectra: 29at.% Ge

Oxygen SIMS Profiles

Recent Samples Exhibit Poorer Properties

Photocapacitance Spectra: 29at.% Ge

Measuring Fraction of Collected Holes

Obtained from Ratio of TPI to TPC signals in Bandtail Region

For this United Solar sample the hole collection fraction exceeds 90% under our experimental conditions

Measuring Fraction of Collected Holes

United Solar RF PECVD 35at.% Ge Sample

Hole Collection: 90% 66%

Measuring Fraction of Collected Holes

United Solar RF PECVD 35at.% Ge Sample

NREL HWCVD 29at.% Ge

Light-Induced Degradation

29at.% Ge sample was exposed to 610nm filtered ELH light at 800mW/cm²

Increase in deep defect density clearly occurs by a substantial factor

Unusual creation kinetics are revealed by DLCP studies

Unusual Defect Creation Kinetics in 29at.% Ge Alloy

Defect density increases by a factor of 1.4 during first 10 minutes and then remains constant for next 3 hours of light exposure before increasing again

Comparison with PECVD Alloy Degradation

NREL 29at.% Ge HWCVD Alloy

USOC 30at.% Ge PECVD Alloy

Note: Slightly higher defect levels in HWCVD alloy sample are likely due its slightly smaller energy gap.

Conclusions

- ➤ We have found superior electronic properties for NREL HWCVD a-Si,Ge:H alloys grown using lower filament temperatures.
- ➤ In particular these samples exhibit sharp band tails and low midgap defect densities, comparable to the best PECVD a-Si,Ge:H samples.
- Electronic properties appear to be very sensitive to oxygen impurity levels, perhaps much more so than PECVD alloy samples.
- ➤ The minority hole collection appears to be less efficient than the best PECVD alloys in apparent contradiction to the above results.
- ➤ Preliminary degradation studies of the 29at.% Ge alloy sample indicate an unusual two-step defect creation kinetics.